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TWO-DIMENSIONAL SUBCRITICAL AND 
SUPERCRITICAL OPEN CHANNEL FLOW CALCULATION 

USING A TIME-MARCHING METHOD 

JOHANNES VASSILIOU SOULIS 
Civil Engineering Department, Demokrition Unioersity o/ Thrace, Xanthi, Greece 

SUMMARY 
A time-marching method is presented for the calculation of two-dimensional, high-speed channel flow, 
including the usually neglected terms of slope and bottom friction. Time-marching methods are potentially 
the most flexible means of calculating flow through geometrically complex channel passages, since they can 
readily deal with subcritical and supercritical flows. The adopted numerical scheme comes straight from gas 
flow computations in turbomachines. The flow is assumed to be fully mixed in the vertical direction, so that 
vertical variations may be neglected. Comparisons with other numerical solutions for various open channel 
configurations show that the proposed approach is a comparatively accurate, reliable and fast technique. It 
can be utilized for open channel designs. 

KEY WORDS Finite volume Time-marching High-speed free-surface flow 

INTRODUCTION 

In recent years significant advances have been made in computational fluid dynamics applied to 
open channels. Many approaches have been taken to the general problem of open channel flow 
calculation. Thus mathematical models exist at various levels of sophistication. Obviously the 
detailed description of flow phenomena is best accomplished in a three-dimensional environment. 
However, the complexity of a formulation in three dimensions requires tremendous amounts of 
computational effort. By assuming that the flow is fully mixed in the vertical direction, a two- 
dimensional analysis may be employed. A further assumption of hydrostatic pressure distribution 
seems to be valid if the water surface is not too rough and it is the objective of the designer to create 
a smooth water surface. Also, if zero slope and zero friction are assumed, the governing flow 
equations become simple enough to permit numerical solution. Such solutions have been 
presented by Ippen,’ Rouse et a/.’ and others. Busemann’s3 method of characteristics was applied 
by Ippen and Dawson4 to calculate the hydraulic jumps produced in supercritical flow in channels 
with varying cross-sectional area. Liggett and Vasudev’ have presented a numerical solution for 
2D high-speed channel flow including slope and friction effects. Charts were presented which gave 
an indication of the magnitude of the departure of the improved solution from the frictionless 
zero-slope solutions. Two-dimensional finite difference calculation methods have been developed 
by McGuirk and Rodi6 which describe the circulation region immediately downstream of a side 
discharge into a flowing river. Chapman and Kuo7** have applied a finite difference technique to 
the solution of the depth-integrated equations of motion in a wide shallow rectangular channel 
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with and without an abrupt expansion. Demureng.lo presented a two-dimensional numerical 
procedure, based on the GENMIX code of Spalding," for calculating both supercritical and 
subcritical flows in open channels with varying cross-section. Predictions agreed well with 
experimental data over a wide range of cases so long as three-dimensional effects did not become 
very important. Villegas' used the method of three characteristics derived by VasudevI3 to 
calculate the flow for the Punchina dam spillway in Columbia. From the analysis he concluded 
that it is possible to use the theory of two-dimensional open channel flow for the design of 
spillways of varying depth. The program ran smoothly for most of the converging part of the 
spillway, but several problems developed upstream of the constant width zone of the channel. This 
constant width zone was located in the downstream region of the converging spillway. The 
approach of Herbich and WalshI4 is based on the method of two characteristics assuming inclined 
frictionless two-dimensional flow with hydrostatic pressure distribution. 

The analogy between free surface water flows and compressible gas flows was pointed out by, 
among others, Riabouchinsky.' Time-marching solutions of the Euler equations are now widely 
used for the analysis of flow through turbomachine blade rows.'6- Their main attraction is the 
ability to compute mixed subsonic-supersonic flows with automatic capturing of shock waves. 
A computer program based on Denton's'' time-marching is employed in all current research 
calculations. Thus a two-dimensional high-speed channel flow calculation including the usually 
neglected terms of slope and bottom friction is presented. The time-marching method is more 
flexible than others because of its ability to handle subcritical and supercritical types of flow. Other 
very important features of the method are its great simplicity and the physical understanding 
obtained from the solution procedure. On the contrary, a finite difference approach requires a co- 
ordinate transformation, which is quite complicated for varying cross-section channels, whereas 
the use of the finite element method involves a rather complex and heavy mathematical 
formulation. 

The method has been applied to a simple straight wall channel configuration to compute the 
water surface profiles and comparisons have been made with numerical solutions. In addition, 
some calculations have been performed on a gradually expanding open channel flow configur- 
ation. Some slope and friction effects are presented which give an indication of the magnitude of 
the departure from the frictionless zero-slope solution. 

The results presented here are a first step towards a test application with a turbulence closure 
model to solve the depth-integrated equations of motion for steady free surface flows. Near future 
extensions of the current research work will include hydraulic jump computations. The addition of 
the energy equation is sufficient to define the solution of mixed continuous-discontinuous flows. 
This is a straightforward procedure and requires minimum computational programming effort. 

FLOW EQUATIONS 

The channel flow will be assumed to be homogeneous, incompressible, two-dimensional and 
viscous with wind and Coriolis forces neglected. A hydrostatic pressure distribution is assumed 
throughout the flow field. Thus the governing flow equations for the physical domain, where the 
Cartesian co-ordinate system is introduced, are 

(continuity), 

gh(So, - S f x )  (x-momentum), - +-- a(hu) d(gh2/2 + h U 2 )  d(huu) 
at ax aY 
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a(hu) d(huu) + d(gh2/2+ hu2) 
--=- -&(Soy- SJy)  (y-momentum). 

at ax aY (3) 

Here x and y represent the Cartesian co-ordinate positions in the longitudinal and transverse 
directions respectively; t is the time; u and v are the averaged velocity components in the x- and y-  
directions respectively; h is the water depth; g is the accelaration due to gravity; Sox (= -azo/dx)  
and Soy(= -dz0/dy), where zo is the bottom elevation, are channel slopes in the x- and y- 
directions respectively; and S,, and S,, are the friction slopes in the x- and y-directions 
respectively. The friction slopes are defined as 

VJ(U2 + u2) 
SfY = hC2 ’ 

where C is ChBzy’s friction coefficient for flow. Another option calculates the friction slopes using 
Manning’s friction coefficient n. By writing the equation for frictional resistance in this way, it was 
assumed that all of the resistance is due to bottom friction, thus neglecting the boundary layer on 
the side walls. The depth-integrated effective stress has been neglected in order to eliminate the 
possibility of introducing numerical smoothing. 

COMPUTATIONAL GRID 

The finite volume (cell) elements used for the current numerical scheme are formed by quasi- 
streamlines and transverse lines, where the element nodes are located at each of the four corners 
(Figure 1). 
In practice, a grid such as that shown in Figure 2 is used for channel flow calculations. The 

numerical scheme allows complete flexibility in choosing the spacing in both streamwise and 
transverse directions. This type of grid is the most common choice in channel flow calculations. 

However, its use imposes severe limitations on accuracy when the elements become highly 
skewed. Numerical errors are likely to occur in the very changes in flow around a highly concave 
(convex) area of the channel and these will then influence the flow on the whole side of the channel. 
Hence it is essential that sufficient grid points are located around the highly curved sides of the 
channel. The use of transverse lines greatly facilitates application of the periodicity condition 

transverse lines 

quasi-streamlines 

Figure 1. Typical finite volume (cell) used for time-marching calculation 



1334 J. V. SOULIS 

Solid 
boundaries 

between the limiting quasi-streamlines upstream of the flow passage. Periodic boundaries may 
arise in cases where the flow passes through geometrically symmetric obstacles, e.g. between the 
piers of a bridge. The direction of these limiting streamlines need not coincide with the inlet flow 
direction. 

NUMERICAL FORMULATION 

A major improvement16 was obtained by solving the equations of flow (1H3) in integral form, i.e. 
by applying the equations of continuity, x-momentum and y-momentum to a series of finite 
volumes with adjacent volumes sharing a common face. In this way, once the steady state is 
reached, the net flux into each elemental volume is zero, so that overall mass is conserved and 
changes of momentum equate to the forces imposed by the boundaries of the system under 
consideration. The two-dimensional flow equations may be written as conservation equations for 
a control volume A V  of unit height and for a time step At as 

At 
AxAy' 

- Ah = [A(hu)Ay + A(~u)Ax] ~ 
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Figure 3 shows the notation used for mass flux balancing across a finite volume (cell) of the flow. 
Similar notation is adopted for the balancing of the x-momentum and’ y-momentum fluxes. Thus, 

Figure 3. Notation for the mass flux across a finite volume (cell) 
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for the mass flux, an XFLUX at point i ,  j is defined as 

while the YFLUX, at the same point i, j is defined as 

The second term of the RHS of the above equation comes from the balancing of the mass fluxes 
into the ABE flow region. The Az term is defined in Figure 3. 

For the x-momentum flux balance, the corresponding (XFLUX),, and (YFLUX),,] are defined 
as 

For the y-momentum flux balance, the corresponding (XFLUX),, and (YFLUX),, are defined 
as 

The terms A(hu) and A(hu) in equation (6) are defined as 

A(hu) = (XFLUX),, j-(XFLUX)i. j -  1 ,  

A ( ~ u )  = (YFLUX)i+ ,,j-(YFLUX)i,j. 

Similar differencing is adopted for the terms A(gh2/2 + hu2), A(gh2/2 + hu') and A(huo) of equations 
(7) and (8). The slopes So, and Soy are precalculated and stored, while the friction slopes S,, and 
S,, are updated in each time step. For all the above slopes, averaged values of the appropriate 
physical quantities are used. 

All these fluxes may now be used in the RHS ofequations (6), (7) and (8) to obtain the changes in 
h: (Ah), hu: A(hu) and hu:A(hu) respectively. A problem arises as to how these changes should be 
distributed between the four corners A, B, C and D of the finite volume (cell) of Figure 3. This 
distribution affects the stability and time dependence of the method but not the steady state 
solution. Once a steady state solution is obtained,'the sum of the fluxes of each conserved variable 
over the faces of each finite volume will be zero, and hence the conservation equations satisfied, 
irrespective of how these changes were distributed. 

In the current research work it was decided to send half of the information regarding the 
changes in water depth h as well as in hu and hu to the upstream face of the finite volume involved, 
while the other half is sent to the downstream corners. This scheme was found to be stable. The 
changes Ah, A(hu) and A(hu) were not used directly to yield the h, hu and hu values. For all test runs 
two different amplification factors were used: a C, factor for the h estimation and a C2 factor for 
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the hu and ho estimations. The procedure is as follows: 

where 

and 

where 

and similarly for the (ho)'"' estimation. The numerical scheme was found to be stable over the 
wide range of C1 and C, values considered. 

The appearence of the time derivative terms in the equations of motion (6)-(8) should not be 
misinterpreted as an attempt to address unsteady flow phenomena. Strictly speaking, the time- 
marching method may only be applied to steady flow problems, and consequently the first-order 
time integration employed is simply a convenient way to iterate to a steady state solution. Table I 
gives details of the iterative scheme. The order in which the x- and y-momentum equations are 
solved is not important. For the scheme to be effective, the equations must be solved in the order: 
continuity -+ momentum. 

BOUNDARY CONDITIONS 

At the upstream boundary AC of Figure 2 a relative flow direction is specified. At the downstream 
boundary BD a specified, uniform across the width, water depth is assumed. Across the channel a 
fixed value for the flow rate is also specified. All the above boundary conditions have been proved 
to be valid for subcritical flow entrance. In cases where a mixed subcritical-supercritical type of 
flow is encountered (always subcritical entrance), a value for the upstream total head is specified 
instead of the flow rate across the channel. 

For supercritical flow entrance, at  the upstream boundary AC the transverse flow direction 
component of velocity is specified along with a uniform across the width, water depth. A value for 
the total head is also specified for the upstream boundary AC. 

In cases where periodic flow is to be calculated (not included in the current research work), the 
periodicity condition on the bounding streamwise lines upstream and downstream of the flow 
passage is easily satisfied by first treating points on these lines as interior points and then equating 
values at  corresponding points on two boundaries. 

When the condition of no mass flow across the solid boundaries is applied, the fluxes hu and ho 
are taken across the faces of the boundary finite volume, which is bounded on one face by the body 
surface (Figure4). Thereafter, the hu and ho flux components for the solid boundaries are 
recalculated with the requirement that the component of velocity normal to the solid face be zero. 

The inputs of the current research programme also include a longitudinal bottom slope, a 
transverse bottom slope of zero value and a friction coefficient. 

NUMERICAL RESOLUTION 

A numerical algorithm has been presented for solving the equations of two-dimensional high- 
speed channel flow. Iterations were continued until the average change of longitudinal flow 



Table I. Outline of the iterative scheme 

1. First guess 
Calculate a linear distribution of the gh2/2 product between inlet and outlet boundaries: thus store 
first guess values of velocities w, u and water depth h -+ d'), d'), h") are known 

- 
2. Solve mass flux equation (6) and obtain h("+') using old values of u and u, i.e. dn) and u(") 1 

t 1 3: Correct water depth h@+I) using equation (22) 

I I 4. Calculate flow conditions at inlet; apply boundary conditions at inlet and outlet 

I 
5. Solve the two momentum equations (7) and (8) to obtain (hu)("+') and (hu)("+') and thereby derive 

new &+ 1) and 1) 

1 

I 
6. Apply solid boundary conditions, i.e. no flow perpendicular to solid surface 

I I 
~ ~~~ 

7. Apply smoothing factors to all changes in parameters; send all these changes to the appropriate 
nodes of the finite volume 

1 

I 8. Check convergence criterion based on longitudinal velocity; has. it been satisfied? 

9. Print out all required flow properties I 
I 

10. stop 
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Figure 4. Solid boundary finite volume (cell) for the first computational row ( i  = 1, j = 1, JM) 

velocity between successive iterations dropped below 0.001 %. The run time per point per iteration 
was 1.15 x lO-’s on a SPERRY-UNIVAC 90/30 computer. The total number of iterations 
required for convergence was about 2000, depending upon the geometry complexity and type of 
flow. The total CPU time for an 8 x 39 grid was about 6695 s on the above computer. 

As with all time-marching methods, the theoretical maximum stable time step At  is determined 
by the CFL criterion 

Ax 
At - 9  

where Ax is the streamwise distance between the upstream and downstream faces of an element. 
Usually, instead of Ax, a Axmin distance is used. The Axmi, distance is calculated as the minimum 
value of all Axs of the grid used. Although different v a l w o f  the physical time step, for each 
element could have been used, in the order to advance the convergence procedure for current 
research purposes a fixed value of At  was chosen. 

The integration of equations (6H8) through time, in order to reach a steady state solution, could 
have been performed using either an explicit or an implicit scheme. Implicit schemes involve some 
form of matrix inversion but allow larger time steps to be taken into consideration. Hence the 
steady state solution is reached in fewer but more costly time steps than with an explicit scheme. 
The current method is categorized as an explicit technique limited to the CFL criterion. The CFL 
essentially says that pressure waves cannot propagate by more than one grid spacing per time step. 
This means that if there are JM grid points in the longitudinal direction, the number of time steps 
required to reach a steady state from an arbitrary initial guess is of the order 50 x JM. order. Thus 
many hundreds of time steps will be needed for convergence. 

The most common source of inaccuracy arises at a blunt leading edge of the tested hydraulic 
structures where the relative coarse grid cannot resolve adequately the rapid changes in the flow 
properties. Then, a large number of grid points must be used to obtain an accurate solution 
around such structures. 

During an iteration the water depth hr’i+ l)  is corrected according to the formula 

(22) hl~~;+”=06fjt”+(1-o)hi,j+1, %+ 1) 

where 6;; l)  denotes the current, but not updated value, and o is a correction factor. For nearly all 
applications it was decided that o should take the value 0.5. 
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The terms gh(So,- S,,)At and gh(Soy - S,,)At of equations (7) and (8) respectively were relaxed 
before they were incorporated into the flow equations. A typical relaxation factor for all test runs 
was 0.9. 

A realistic guess for the expected water depth distribution is suggested. This will drastically 
reduce the amount of CPU time spent to achieve convergence. The program starts with an initial 
linear gh2/2 distribution between the inlet and outlet flow regions of the hydraulic structure. 
Thereafter, an initial flow distribution is estimated using channel slopes and water depths. 

APPLICATIONS 

The first subcritical flow test is a straight parallel wall channel of rectangular cross-section as 
shown in Figure 5. The problem selected comprises a flow rate of 200 m3 s-'  with an average exit 
depth h2 of 2.0 m and an inlet flow angle j1 of 0.0". In order to get an indication of the time- 
marching computed results, it was decided to employ a standard, quasi-2D, fixed step numerical 
method. The water depth profiles are computed in the form 

.i"+ 1 Ui" 
hi+ 1 = hi + (So - S,)(x,+ 1 -xi) -__ +- . 

29 29 

A definition sketch is shown in Figure 6. In performing the numerical integration, the 
Ax = ( x i +  - x i )  step is held constant, S ,  is evaluated using Chezy's equation, hi+ = constant 
at xi+ = 0.0, So is constant and Q is also constant. This technique enables variable width 
channel flows to be calculated. 

A comparison between time-marching and the above described standard fixed step method 
predictions of velocity and water depth distributions with C = 50.0 (Chkzy's friction coefficient) at 
So,=OO1 and So,=0.02 is shown in Figure 7. Actually, this figure shows the variation of 
centreline velocities and water depths as compared to the frictionless zero-slope solution, which is 
denoted by the subscript 'ir' (irrotational). The agreement between the two numerical methods is 
satisfactory. It must be emphasized that the velocity throughout the flow field is subcritical 
(Fr = u/,/(gh) < 1.0). A comparison between time-marching and the fixed step method predic- 
tions of velocity and depth distributions for the above channel at Q = 20-0 m3 s-', h,  = 2.0 m, So, 
= 0.01 and p1 = 0.0" using various Chhzy friction coefficients, ranging between C = 20.0 and 
frictionless flow, is shown in Figure 8. The agreement is again satisfactory. 

The channel transition shown in Figure 9 was used to test the numerical solution for 
supercritical flow. The length of the expansion is 1 lb, where b is the half entrance width, and the 
final width is 15b.  The expansion was tested for an entrance Froude number of 2.0 and a width 
ratio h/b at entrance of 0.5. For all numerical calculations the expansion produces reasonably 

d 
FLOW 

I 

b = 7 . 0  rn 

m/ -fi\//4\\ //A\/,&V/A,"+, I 
k------ L = 1 4 . 0  m --q 

Figure 5. Straight parallel wall channel geometry 
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Figure 6. Definition sketch for gradually varied flow 

smooth water surfaces. Figures lqa), (b) and (c) show the variation of the centreline velocities in 
the improved solution as compared to the frictionless zero-slope solution for steep, mild and flat 
slopes respectively. The actual flow conditions at entrance were: total head H , ,  = 5.25 m, water 
depth h,  = 1.75 m, transverse velocity u1 = 0.0 m s- '. As expected, the slope and friction have a 
cancelling effect. 

Figures 11, 12 and 13, 14 show the average exit velocity and water depth respectively as 
functions of slope and friction. The maximum effects of slope and friction are of the order of 20% 
over the ranges considered. 

The third flow test is a divergent channel geometry of rectangular cross-section. The channel 
geometry is shown in Figure 9 with b = 1.75 m and a total expansion length L of 15.0 m. The 
subcritical flow problem selected uses a flow rate of 5.0 m3 s-l, an average exit flow depth h, of 
2.0 m, an inlet flow angle B1 of OO", a bottom slope of 0.0 and zero friction. A comparison between 
time-marching and the fixed step method predictions of velocity and depth distributions for the 
linearly expanding channel geometry is shown in Figure 15. Total velocity and depth values 
averaged across the channel width are used for the time-marching predicted results. The 
agreement is reasonably good. 

The channel expansion shown in Figure 16 was used: (a) to test the accuracy of the time- 
marching solution by comparing it with a characteristics method; and (b) to get an indication of 
the magnitude of the departure from the frictionless zero-slope solution. This expansion was 
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Figure 7. Comparison between time-marching and fixed step method predictions of subcritical velocity and depth 
distributions for straight parallel wall channel geometry at Q = 20.0 m3 s-', h, = 2.0 m and C = 50.0 using various slopes 
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s t e p  method 

0 . 9 2 r  
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d i s t a n c e  along channel aXi6 (In) 

Figure 8. Comparison between time-marching and fixed step method predictions of subcritical velocity and depth 
distributions for straight parallel wall channel geometry at Q = 20.0 m3 s - l ,  h, = 2.0 m and So, = 001 using various Chkzy 

friction coefficients 
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Y Figure 9. Linearly expanding channel geometry 
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Figure 10. (a, b) 
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Figure 10. Time-marching predictions of the centreline velocity distributions for the linearly expanding channel at 
Pr, = 2.0 using various slopes and Chezy friction coefficients 
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Figure 11. Time-marching predictions of exit velocity 
variation with channel slope for the linearly expanding 
channel at Frl=2.0. h / b = 0 5  and o,=Oms- '  using 

various Chtzy friction coefficients 
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0.01 0 . 0 2  0.03 0.04 0.05 
so 

Figure 12. Time-marching predictions of exit velocity 
variation with Chezy's friction coefficient for the linearly 
expandingchannelat F r ,  =2.0,h/b=0.5and ti, =Oms- '  

using various channel slopes 
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designed using roughly the method of Rouse et al.' Their general design method was simplified5 
by using a Prandtl-Meyer table of the expansion functions which were generated by Liggett and 
presented in the thesis by Va~udev'~. The expansion was designed for an entrance Froude number 
of 2.0 and a depth-to-width ratio h/b at entrance of 0.5. The length of the expansion is 1 lb and the 
final width 1-5b. Figures 17-19 show the comparisons between time-marching and characteristics5 
predictions of the centreline velocity distributions in the improved solution as compared to the 
frictionless zero-slope solution for various ChCzy friction coefficients. For high values of C 
(Figures 17 and 18) the agreement is satisfactory. The agreement worsens at about 75%-100% of 

s =o.o 
1 . 0 2 1  C O =148.6 

o o o o time-marchinq 
characteristics 

O S g 4  0.92 - 
0.0 0 .1  0.2 0 . 3  0.4 0.5 0.6 0.7 0.8 0 . 9  1.0 

x/L 

Figure 17. Comparison between time-marching and characteristics predictions of centreline velocity distributions for 
Rouse et al. channel at Fr,  = 2.0 

o o o o time-marchinq 
characteristics 

O S g 4  t 
0.92 1 I 1 I I 1 I 

0.0 0.1 0.2 0.3 0 . 4  0.5 0.6 0.7 0.8 0.9 1.0 
x/L 

Figure 18. Comparison between time-marching and characteristics predictions of centreline velocity distributions for 
Rouse et al. channel at F r ,  = 2.0 
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1.02 

1350 

U - 
Uir 

s =o.o 
0 . c =90.0 

o o o o time-marchinq 
characteristics 

Figure 19. Comparison between time-marching and characteristics predictions of centreline velocity distributions for 
Rouse et al. channel at F r ,  = 2.0 

1 .so 
+ IM*dP1=12*39 

h 
(m) 

1.40 

1 .no 
C' 

axial distance (m) 

Figure 20. Predicted centreline water depth distributions for Rouse et a!. channel at F r ,  = 2.0, So = 0.0 and C = 90.0 using 
various Ax: Ay ratios 

x/L (Figure 19) where the friction is high. The computational grid was formed by finite volumes of 
Ax:Ay N 1 : 1. The current test modelling has been carried out with an 8 x 39 grid. Grid reduction 
tests have shown (Figure 20) that the Ax:Ay ratio does not essentially alter (maximum errors of 
less than 2%) the flow quantities. 

CONCLUSIONS 

A time-marching method, which has found wide application in computing turbomachinery flows, 
has been developed and applied to open channel flow calculations. The main advantage of the 
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method is the ability to deal readily with subcritical and supercritical types of flow; other very 
important features of the method are its great simplicity and the physical understanding obtained 
from the solution procedure. The presented time-marching method solves the equations of two- 
dimensional high-speed channel flow while including the usually neglected terms of slope and 
friction. It has been applied to a variety of open channel configurations in order to validate its 
potentialities. Charts are presented for an expansion channel which give an indication of the 
magnitude of the departure of the improved solution from the frictionless zero-slope solution. 
Comparisons with a characteristics method as well as with numerical solutions show that this 
approach is comparatively accurate, reliable and fast. It would be a relatively simple extension to 
program the equations for mixed continuous-discontinuous flows. The method can be utilized to 
eliminate the most common cause of spillway failures, namely the improper design of steep chutes. 
Straight walls are economical and perform satisfactorily in some physical situations. However, 
such walls may cause unacceptable surface waves in the downstream channel. The remedy is to use 
gently curving sidewalls. But this is a delicate problem, and whenever high velocity encounters an 
improperly designed side wall, large dynamic phenomena are created. The current method can be 
easily extended to design these side walls in order to obtain the desired flow distribution. 
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